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Helmholts tənliyinin ədədi həlli üçün sonlu fərqlər  

metodunun tətbiqi və təhlili 
 

Xülasə 
 

Bu məqalədə biz Helmholts tənliyinin ədədi həlli üçün sonlu fərqlər metodunun tətbiqi və təhlilini 

araşdıracağıq. Helmholts tənliyi riyazi fizikanın əsas tənliklərindən biridir. Helmholts tənliyini alman 

fiziki və riyaziyyatçısı Hermann von Helmholts dalğa proseslərinin riyazi təsvirini sadələşdirmək 

üçün formalaşdırıb. Bu tənlik akustikada, dalğa yayılması, elektromaqnit dalğaları, istilikkeçirmə və 

digər proseslərdə istifadə olunur. Helmholts tənliyinin analitik həlli yalnız sadə həndəsi formalara 

malik sahələrdə və seçilmiş sərhəd şərtlərində hesablana bilir. Mürəkkəb proseslərdə, qeyri-bircins 

mühitlərdə və real fiziki prosesləri əks etdirən sərhəd şərtləri üçün analitik həll tapmaq çətin və ya 

mümkün olmur. Buna görə də tənliyin təqribi həlləri araşdırılır və ədədi üsullardan istifadə olunur. 

Bu məqalədə biz diferensial tənliyin sonlu fərqlər üsulu ilə cəbri tənliklər sisteminə gətirilməsi və 

alınan sistem tənliyin həlli məsələlərinə nəzər salacağıq. 
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Application and Analysis of the Finite Difference Method for the  

Numerical Solution of the Helmholtz Equation 
 

Abstract 
 

In this article, we will study the application and analysis of the finite difference method for the 

numerical solution of the Helmholtz equation. The Helmholtz equation is one of the fundamental 

equations of mathematical physics. The Helmholtz equation was formulated by the German physicist 

and mathematician Hermann von Helmholtz to simplify the mathematical description of wave 

processes. This equation is used in acoustics, wave propagation, electromagnetic waves, thermal 

dissipation, and other processes. The analytical solution of the Helmholtz equation can be calculated 

only for domains with simple geometric shapes and with selected boundary conditions. In complex 

processes, inhomogeneous environments, and for boundary conditions reflecting real physical 

processes, it is difficult or impossible to find an analytical solution. Therefore, approximate solutions 

of the equation are investigated, and numerical methods are used.
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In this article, we will consider the problems of reducing the differential equation to a system of 

algebraic equations using the finite difference method and solving the resulting system of equations. 

Keywords: Helmholtz equation, finite difference method, electromagnetic waves, numerical 

solution, mathematical physics, differential equation 
 

Giriş 
 

Helmholts tənliyinin analitik və ədədi həlləri mövcuddur. Ədədi həllərdən ən çox istifadə 

olunanlar bunlardır: sonlu fərqlər metodu (FDM), sonlu elementlər metodu (FEM), spektral metodlar. 

Sonlu fərqlər metodu bu sahədə daha geniş tətbiq edilən üsullardan biridir. Helmholts tənliyinin sonlu 

fərqlər metodu ilə həlli, həmçinin tənliklə bağlı müxtəlif məsələlər bir neçə məşhur məqalələrdə təsvir 

edilmişdir (Brenner və Scott, 2008). 

Analitik həllər Helmholts tənliyi üçün yalnız müəyyən sadə həndəsi sahələrdə və sərhəd 

şərtlərində mövcuddur, mürəkkəb geometrik formalar və real fiziki sərhəd şərtləri üçün onların 

tapılması çətin və ya qeyri-mümkün olur. Bu çətinlik fenomeni xüsusilə sonsuz və ya qeyri-adi sərhəd 

şərtlərinə sahib problemlərdə daha açıq şəkildə özünü göstərir və analitik üsullarla sərhəd problemi 

həllini ciddi şəkildə məhdudlaşdırır (Johnson, 2009). 

Helmholts tənliyinin daha bir həll üsulu da geniş yayılmışdır. Bu üsul Adomian dekompozisiya 

üsuludur. Sonlu fərqlər metodu ilə Adomian dekompozisiya metodunun üstünlüyü və fərqlilikləri 

müqayisə edilir (Wang və b., 2018). Dekompozisiya metodu bu tip tənliklərin həm analitik, həm də 

təxmini ədədi həllini sadə və diskretləşdirmə tələb etmədən əldə etməyə imkan verir (Nəbiyeva, 

2025). 

Əlavə olaraq, Helmholts tənliyi üçün kifayət qədər ədədi və analitik metodların keyfiyyəti və 

tətbiqi sahəsində çoxlu işlər görülmüşdür: iterativ metodlar, spektral metodlar və digər diskretləşmə 

yanaşmaları hesablanmışdır (Saad, 2003; Zhang, 2014). 

Son iyirmi ildə Helmholtz tənliyi üçün sonlu fərq üsullarının inkişafı haqqında müxtəlif qısa 

icmallar təqdim olunur. Faza xətasına əsaslanaraq, bu məqalədə 1D, 2D və 3D-də nəticələr verilmiş, 

müxtəlif sxemlərin fərqi və əlaqəsi də göstərilmişdir, xüsusən Helmholtz tənliyini yüksək dalğa 

nömrələri ilə həll etmək üçün müraciət edərkən hesablama effekti, üstəlik, yüksək dalğa nömrələri 

problemlərinin yaxınlaşmasında mövcud olan bəzi əsas problemlər müzakirə edilmişdir (Strikwerda, 

2004). 

Tədqiqat 

Bu tədqiqatda Helmholts tənliyinin ədədi həlli üçün sonlu fərqlər metodundan istifadə 

olunmuşdur. Araşdırmanın əsas məqsədi diferensial tənliyin diskretləşdirilməsi yolu ilə cəbri 

tənliklər sisteminə çevrilməsi və bu sistemin ədədi həllinin təhlil edilməsidir. Tədqiqat ikiölçülü sahə 

üçün aparılmış və metodun dəqiqliyi, sabitliyi və yaxınlaşma xassələri araşdırılmışdır (Courant və 

Hilbert, 2008). 

Helmholtz tənliyinin həlli üçün sonlu fərqlər metodunun tətbiqi Samarski (1989), Strikwerda 

(2004) və LeVeque (2007) kimi müəlliflərin işlərində geniş şəkildə araşdırılmışdır. Xüsusi yüksək 

sürətlərdə yaranan cəbri sistemlərin həlli Ernst və Gander (2012) əsasında yaradılmışdır (Shah və b., 

2021). 

Məsələnin qoyuluşu 

Δ𝑢 + 𝑠2𝑢 = 0                           (1) 
 

Bu tənliyə Helmholts tənliyi deyilir və araşdırma zamanı bu tənlikdən istifadə edəcəyik. 

u(x,y) – axtarılan funksiya  

s- dalğa parametri 

Törəmələrin yaxınlaşması 

Sonlu fərqlər metodunu tətbiq etmək üçün funksiyanın törəmələrini yalnız funksiyanın müəyyən 

nöqtələrindəki qiymətləri əsasında təxmini hesablamalıyıq (Helmholtz, 1860). Əgər f∈ 𝐶∞(R) olarsa, 

onda 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) + ⋯ ,  (2)  
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və buna uyğun olaraq 

𝑓(𝑥 − ℎ) = 𝑓(𝑥) − ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) −

ℎ3

3!
𝑓′′′(𝑥) + ⋯  . (3)  

 

Bu ifadələri çıxdıqda aşağıdakı alınır 

 

𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ) = 2ℎ𝑓′(𝑥) + 𝑂(ℎ3)              (4) 

 

Sonda funksiyanın törəməsi aşağıdakı kimi ifadə olunur 

 

𝑓′(𝑥) ≈
𝑓(𝑥+ℎ)−𝑓(𝑥−ℎ)

2ℎ
                                                            (5) 

 

Burada xəta anlayışı O(ℎ2) olur. Həmçinin (2) və (3) ifadələrini tərəf-tərəfə topladıqda  aşağıdakı 

alınır 

 

𝑓(𝑥 + ℎ) + 𝑓(𝑥 − ℎ) = 2𝑓(𝑥) + ℎ2𝑓′′(𝑥) + 𝑂(ℎ4)              (6) 

 

Onda 𝑓′′(𝑥) belə alınır 

 

𝑓′′(𝑥) ≈
𝑓(𝑥+ℎ)−2𝑓(𝑥)+𝑓(𝑥−ℎ)

ℎ2
                                                     (7) 

Buna oxşar qaydada f funksiyasının qismən törəmələri təxmini belə hesablanır 

 
∂𝑢

∂𝑥
(𝑥, 𝑦) ≈

𝑢(𝑥 + ℎ, 𝑦) − 𝑢(𝑥 − ℎ, 𝑦)

2ℎ
,                                (8) 

 
∂𝑢

∂𝑦
(𝑥, 𝑦) ≈

𝑢(𝑥, 𝑦 + 𝑘) − 𝑢(𝑥, 𝑦 − 𝑘)

2𝑘
,                            (9) 

 
∂2𝑢

∂𝑥2
(𝑥, 𝑦) ≈

𝑢(𝑥 + ℎ, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 − ℎ, 𝑦)

ℎ2
,    (10) 

 
∂2𝑢

∂𝑦2
(𝑥, 𝑦) ≈

𝑢(𝑥, 𝑦 + 𝑘) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 − 𝑘)

𝑘2
.         (11) 

 
Sonlu fərqlər metodu 

 

R=[𝑎, 𝑏] × [𝑐, 𝑑] 𝑅2-də Dözbucaqlı oblast olsun və aşağıdakı sərhəd məsələsinə baxaq. 

 

{
∆𝑢 + 𝑠2𝑢 = 0,                  𝑅 − 𝑑ə,

𝑢(𝑥. 𝑦) = 𝑓(𝑥, 𝑦),             𝜕𝑅 − 𝑑ə.
                                            (12) 

 

Bu məsələyə sonlu fərqlər metodunu tetbiq etmək üçün əvvəlcə R-ni (𝑥𝑖, 𝑦𝑖) formalı n× 𝑚 torla 

yaxınlaşdırırıq (Iserles, 2009). 

 

𝑥𝑖 = 𝑎 + (𝑖 − 1)ℎ,     ℎ ≔
𝑏−𝑎

𝑛−1
,     𝑦𝑖 = 𝑐 + (𝑗 − 1)𝑘,     𝑘 ≔

𝑑−𝑐

𝑚−1
   (13) 

 

Hər hansı verilmiş bir tor nöqtəsi (x,y) üçün (10) və (11) dən istifadə edək 
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∆𝑢 + 𝑠2𝑢 = 0 tənliyi aşağıdakı kimi yazaq  

 
𝑢(𝑥+ℎ,𝑦)−2𝑢(𝑥,𝑦)+𝑢(𝑥−ℎ,𝑦)

ℎ2
+

𝑢(𝑥,𝑦+𝑘)−2𝑢(𝑥,𝑦)+𝑢(𝑥,𝑦−𝑘)

𝑘2
+𝑠2𝑢(𝑥, 𝑦) = 0     (14) 

 
𝑘2

ℎ2
= 𝑟 götürsək   (14) ifadəsi aşağıdakı beşnöqtəli formulaya sadələşir: 

 

ru(x+h,y)  + ru(x-h,y)+u(x,y+k)+u(x,y-k) +(𝑠2𝑘2 − 2𝑟 − 2)𝑢(𝑥, 𝑦) = 0 

 

Sonda, hər bir tor nöqtəsi üçün, u-nun qiymətlərini özündə əks etdirən oxşar xətti tənlik yaza 

bilərik. Burada u-nun qiymətləri sərhəd boyu məlum,(n-2)(m-2) tor nöqtələrində isə məlum 

olmadığından,  həll etmək üçün (n-2)(m-2)  tənliklərindən və (n-2)(m-2) dəyişənlərindən  ibarət xətti 

sistem yaradırı. İndi isə (n-2)(m-2) dəyişənlərini 𝑧𝑘 ilə nömrələyək (Antoine və b., 2014). 

 

𝑧𝑘 = 𝑢(𝑥𝑖, 𝑦𝑖)                   𝑘 = (𝑗 − 2)(𝑛 − 2) + 𝑖 − 1. 
 

Bu xətti tənliklər sistemimizi A𝑧̅ = 𝑏̅ şəklində yazmağa imkan verir, burada  

 

A (n-2)(m-2)×(n-2)(m-2)  matrisidir. 

 

Bu sistemi həll etməklə biz daxili tor nöqtələrində u üçün təxmini qiymət əldə edirik və bu həll 

(12) tənliyinin ədədi həlli adlanır (Evans, 2010). 

(12) tənliyini daha rahat həll etmək üçün MATLAB proqramında yuxarıdakı alqoritmləri yazaraq 

tənliklər sistemini həll etmək olar. Bu nümunədə biz tənliyi beşnöqtəli sxem şəklində yazmışıq 

həmçinin doqquznöqtəli sxemdən də istifadə edilir. Doqquznöqtəli sxem daha əlverişlidir və daha 

dəqiq həll tapmağa kömək edir (El-Sayed və Kaya, 2004). 

 

Nəticə 
 

Bu məqalədə biz Helmholts tənliyinin ədədi həlli üçün sonlu fərqlər metodunun tətbiqi və təhlili 

aparmışıq. Tədqiqat çərçivəsində ikiölçülü Helmholts tənliyi üçün törəmələri yaxınlaşdırıb, qismən 

törəmələri tapmışıq və düzbucaqlı oblastda beşnöqtəli sxemə sadələşdirmişik. Sonda alınan xətti 

tənliyi müxtəlif üsullarala həll etmək olar. Əlverişli üsullardan biri də Yakobi və Gauss-Seidel 

üsullarıdır. Bu üsulları kod yazaraq C, C++, MATLAB və başqa proqramlaşdırma dillərindən istifadə 

edərək hesablaya bilərik. 

Tədqiqat nəticələri sübut edir ki, analitik həllərin mövcud olmadığı mürəkkəb həndəsi sahələr və 

real sərhəd şərtləri üçün sonlu fərqlər metodu praktik və dayanıqlı ədədi həll imkanı yaradır. Əldə 

olunan nəticələr akustika, elektromaqnit dalğalarının yayılması və digər tətbiqi riyaziyyat 

məsələlərində Helmholts tipli tənliklərin modelləşdirilməsi üçün istifadə oluna bilər. 

Helmholts tənliyinin həlli üsulları analitik həllin mümkün olmadığı mürəkkəb dalğa 

problemlərinin modelləşdirilməsi və təhlili üçün əsas hesablama alətlərindən biridir. 

Gələcək tədqiqatlarda yüksək sıralı sonlu fərqlər sxemlərinin, sürətləndirici iterativ metodların və 

paralel hesablama yanaşmalarının tətbiqi ilə metodun effektivliyinin daha da artırılması 

məqsədəuyğun hesab olunur. 
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